Algebra 2 Preparation Packet

Complete this packet while watching the corresponding videos and taking notes. For extra practice, try the HW assignments (answers included)

Graphing Linear Functions

Creating Linear Functions Using Point-Slope Formula

Slope-Intercept Formula	Point-Slope Formula
y = mx + b	$y - y_1 = m(x - x_1)$

How to Use Point-Slope Formula	
 Substitute slope for m Substitute a given point for x₁ and y₁ Rewrite your equation in slope-intercept form 	

Ex. 1 m = -2, (10, -1) Ex. 2 $m = \frac{2}{3}$, (-6, 5) Ex. 3 $m = -\frac{1}{2}$, (4, -3)

Your Turn!		
1) $m = -3, (-2, 5)$	2) $m = \frac{1}{3}, (12, -4)$	3) $m = 1, (0, 7)$

Slope Formula

Slope Formula
$m = \frac{y_2 - y_1}{x_2 - x_1}$

How to Use the Slope Formula	
 Label your coordinates (x1, y1) and (x2, y2) Substitute values into your formula Simplify the fraction, if necessary 	

Ex. 1	(-2, 3) $(1, 1)$	Ex. 2	(2, 3) (-5, 3)	Ex. 3	Create an equation that goes through the
					points $(3, -4)$ $(7, -6)$

	Your Turn!	
1) (2, 1) (5, -2)	2) (0, -3) (5, 7)	3) Create an equation that goes through the
		points (-3, -4) (-1, -6)

Solving Systems of Equations: The Substitution Method

	How to Use the Substitu	tion Method
	 Pick one equation and sol Substitute this expression Solve for the remains Substitute this value in 	lve for either variable into the other equation uning variable to either equation.
Ex. 1 $y = -3x + 4$	Ex. 2 $y = 2x$	Ex. 3 $y - 2 = -4x$

$$y = 4x - 10$$

y - 2x-6x + 3y = 16

Ex. 3 y - 2 - -xy = 6x - 8

		Your Turn!
1) $y = x - 4$	2) $x - 1 = 3y$	3) $x = 3y$
-4x - 6y = -16	2x + 4y = 12	x - 3y = 0

Solving Systems of Equations: The Elimination Method

	How to Use the Elimination Method		
	 Line up x and y terms vertically Multiply one or both equations, when necessary, to create coefficients for x or y that are opposites (positive/negative) Add the equations vertically (one of your variables should cancel out) Solve for the remaining variable Substitute this value into either original equation 		
Ex 1.	2x + 2y = -2 $3x - 2y = 12$	Ex 2. $2x + 3y = 6$ x + 2y = 5	Ex 3. $4x + 5y = 6$ 6x - 7y = -20

	Your Turn!	
1) $x - y = 2$	2) $3x - y = 2$	3) $4x + 2y = 8$
x + y = -3	x + 2y = 3	16x - y = 14

How to Solve a System of Three Equations

- 1. Use two equations to eliminate one variable
- 2. Use two different equations to eliminate the same variable
 - 3. Solve the systems of two equations
 - 4. Substitute these two values into any original equation

Ex. 1 x + y + z = 5 2x - y + z = 9 x - 2y + 3z = 16

Your Turn!

1) 4x - 4y + 4z = -44x + y - 2z = 5-3x - 3y - 4z = -16

Solving Systems of Inequalities: Graphing

Introduction To Transformations

Transformations of Functions		
y = -a(bx - h) + k		
Symbol	Transformation	
-	Reflection over the x-axis	
а	Vertical stretch or shrink by a factor of <i>a</i>	
b	Horizontal stretch or shrink by a factor of $\frac{1}{b}$	
h	Horizontal shift	
k	Vertical shift	

Ex. 1 Describe the transformations of g(x) = 3|x + 2| - 4 compared to its parent function, f(x) = |x|

Ex. 2 Describe the transformations of $g(x) = -(2x - 4)^2 + 1$ compared to its parent function, $f(x) = x^2$

Ex. 3 Write a new function, g(x), for f(x) = |x| transformed in the following ways: Reflection over the x-axis, vertical shrink by a factor of $\frac{1}{2}$, horizontal shift right 2, vertical shift up 5

Your Turn!

1) Describe the transformations of $g(x) = -5(x + 5)^2$ compared to its parent function, $f(x) = x^2$

2) Write a new function, g(x), for $f(x) = x^2$ transformed in the following ways: Vertical stretch by a factor of 2, horizontal shift left 7, vertical shift down 4

3) Describe the transformations of $g(x) = \left|\frac{1}{3}x - 8\right| + 1$ compared to its parent function f(x) = |x|

Graphing Absolute Value Functions

Graphing Quadratic Functions from Vertex Form

Vertex Form Standard Form	
$y = a(x-h)^2 + k$	$y = ax^2 + bx + c$
How to Graph a Quadratic	c Function in Vertex Form
 Plot you Use a t-chart to find coordina All quadratic function Short-Cut - Use a(1 - 3 - 5) 	The vertex (h, k) tes to the left and right of your vertex as will make a u-shaped graph the ratio to plot additional points
Ex. 1 $y = (x - 2)^2 - 3$ Ex. 2 $-2x^2 + 5$	Ex. 3 $y = \frac{1}{2}(x + 1)^2 - 4$
Your	Turn!
Ex. 1 $y = -(x - 2)^2$ Ex. 2 $y = 2x^2 - 3$	Ex. 3 $y = (x + 3)^2 + 2$

Graphing Quadratic Equations from Standard Form

Vertex Form	Standard Form
$y = a(x - h)^2 + k$	$y = ax^2 + bx + c$

How to Graph a Quadratic Equation from Standard Form

- 1. Use the formula $x = -\frac{b}{2a}$ to find the x-value of your vertex 2. Substitute x to find the y-value of your vertex
 - 3. Plot your Vertex
- 4. Use a t-chart to find coordinates to the left and right of your vertex
 - Short-Cut Use a(1 3 5) ratio to plot additional points

Ex. 1 $y = x^2 + 6x - 1$

Solving Equations Using the Square Root Method

The Square Root Method

Isolate x²
 Take the ±√ of both sides
 Simplify your radical, when necessary
 When taking the square root of a negative number, use √-1 = i

Restriction: does not work when the equation includes an "x-term"

Ex. 1 $x^2 - 32 = 0$

Ex. 2 $\frac{1}{3}x^2 - 7 = 2$

Ex. 3 $2x^2 + 12 = 0$

Your Turn!

1) $5x^2 = 100$ 2) $\frac{1}{2}x^2 - 12 = 0$ 3) $3x^2 + 30 = 0$

GCF	Magic X	Difference of Two Squares
 Find the greatest common factor (GCF) of each term Divide every term by the GCF Place the GCF on the outside of your parentheses 	$x^{2} + bx + c$ Multiply to make C Add to make b $(x \pm \#)(x \pm \#)$	If you are subtracting two perfect squares, use the D.O.T.S formula $a^2 - b^2$ (a + b)(a - b)
	Restriction: <i>a</i> must equal 1	
Ex. 1 $5x^2 - 15x$	Ex. 2 $x^2 - 4x - 12$	Ex. 3 $4x^2 - 121y^2$

Factoring: GCF, Magic X, Difference of Two Squares

			Your Turn!		
1)	$6x^2 - 8x$	2)	$x^2 - 8x + 15$	3)	$25x^2 - 1$

Factoring: The Bottom Up Method

The Bottom Up Method			
Use this method when $a \neq 1$	$2x^2 + 9x + 4$		
1. "Move" <i>a</i> by multiplying it to <i>c</i>	$x^2 + 9x + 8$		
2. Factor using Magic X	(x + 8)(x + 1)		
3. Divide each factor by <i>a</i>	$(x + \frac{8}{2})(x + \frac{1}{2})$		
4. Simplify when possible, bring number from bottom-up when not possible	(x + 4)(2x + 1)		

Ex. 1 $3x^2 + 10x + 8$ Ex. 2 $2x^2 - x - 10$ Ex. 3 $2x^2 - 9x + 9$

			Your Turn!	
1)	$2x^2 + 7x + 6$	2)	$3x^2 - 7x - 6$	3) $2x^2 - 8x + 8$

Solving Quadratic Equations by Factoring

		Solve by Factoring	
		 Set your equation equal to zero Factor your equation Set each factor equal to zero and solve (Zero Product Property) 	
Ex. 1	$9x^2 = 16$	Ex. 2 $x^2 + 7x = -10$ Ex. 3 $2x^2 = 9x - 7$	

	Your Turn!	
1) $x^2 - x - 30 = 0$	2) $36x^2 = 1$	3) $2x^2 + 11x = -14$

Solving Quadratic Equations Using the Quadratic Equation

Using the Quadratic Equation

Set your equation equal to zero
 Substitute *a*, *b*, and *c* into the quadratic equation
 Simply, using *i* = √-1

Ex. 1 $x^2 + 5x = -4$

Ex. 2 $2x^2 - 4x + 5 = 0$

1) $x^2 - 6x = -9$

Your Turn! 2) $2x^2 + x - 2 = 0$

Solving Quadratic Equations by Completing the Square

Completing the Square
1. Move your constant, c , to the other side of the equation
2. Use the C.T.S. formula to find the "magic number" $\left(\frac{b}{2}\right)^2$
3. Add your "magic number" to both sides of your equation
4. Factor your equation using Magic X
5. Take the $\pm $ of both sides
6. Solve for x

Ex. 1 $x^2 + 4x + 3 = 0$

Ex. 2 $x^2 - 6x - 10 = 0$

1) $x^2 + 8x + 12 = 0$

Your Turn! 2) $x^2 - 4x - 7 = 0$

Properties of Exponents

Product Property	Quotient Property	Power Property	Negative Exponents
When multiplying terms with exponents, add the exponents $x^{a} \cdot x^{b} = x^{(a+b)}$	When dividing terms with exponents, subtract the exponents $\frac{x^a}{x^b} = x^{(a-b)}$	When raising a power to a power, multiply the exponents $(x^a)^b = x^{a \cdot b}$	To clear a negative exponent, flip the term $x^{-1} = \frac{1}{x}$ $\frac{1}{x^{-1}} = x$
Ex. 1 $\frac{4x^6 \cdot 3x^5}{6x^3}$	Ex. 2 $\frac{x^8 y^2}{x^5 y^7}$	Ex. 3	$\left(\frac{x^9}{x^4}\right)^3$

2) $\frac{(x^3)(x)}{x^6}$

Your Turn!

3) $\left(\frac{x^{12}}{x^{10}}\right)^4$

Multiplying Polynomials

FOIL	Box Method
First, Outside, Inside, Last	Useful when multiplying larger polynomials
 Multiply all terms together, f Comb 	following the properties of exponents bine like terms

Ex. 1	(x - 3)(x + 9)	Ex. 2 $(x + 2)(x^2 - 2x + 4)$	Ex. 3 $(x^2 + 3x + 1)(x^2 + x - 5)$
-------	----------------	-------------------------------	-------------------------------------

	Your Turn!		
1)	(x + 7)(x - 12)	2) $(x - 6)(x^2 + x - 8)$	3) $(x^2 + 2x - 3)(x^2 + 3x - 2)$