1) The value of a car $y$ (in thousands of dollars) can be approximated by the model $y=31(0.92)^{t}$, where $t$ is the number of years since the car was new. Estimate when the value of the car will be $\$ 9600$ ?

A\#8

$$
\begin{aligned}
& y=1.6(1.0176)^{t} \\
& y=1.6(1.0176)^{9} \\
& y=1.87 \\
& 1.87 \text { million }
\end{aligned}
$$

2009-2000
2) In 2000, the population of a city was about 1.04 million. During the next 14 years, the population increased by about $2.05 \%$ each year. Write an exponential growth model giving the population (in millions) t years after 2000. Estimate the city's population in 2008.


$$
\begin{aligned}
& y=31(0.92)^{t} \\
& \frac{9.6}{31}=\frac{31(0.92)^{t}}{31} \\
& 0.31=(0.92)^{t} \\
& \log _{0.92} 0.31=t
\end{aligned}
$$

$$
t=\frac{\log 0.31}{\log 0.92}
$$

$$
t=14.05 \approx 14
$$

$$
14 \text { years later }
$$

3) In 2000, the population of a city was about 1.04 million. During the next 14 years, the population increased by about 2.05\% each year. Write an exponential growth model giving the population (in millions) t years after 2000. Estimate the year when the city's population was 1.3 million.

4) The amount, in grams, of the radioactive isotope barium -140 remaining after t days is $y=a(0.5)^{\frac{1}{13}}$, where a in the initial amount in grams. What percent of the barium -14 decays each day?

A\#3

$$
\begin{aligned}
y & =1.04(1.0205)^{t} \\
1.3 & =1.04(1.0205)^{t} \\
1.25 & =(1.0205)^{t} \\
\log _{1.0205} 1.25 & =t
\end{aligned}
$$

$$
t=\frac{\log 1.25}{\log 1.0205}
$$

$$
t=10.99 \approx 11 \text { years }
$$

$$
2000+11
$$

5) You deposit $\$ 8600$ into an account that pays $1.32 \%$ annual interest. Find the balance after 4 years when the interest is compounded quarterly.

AH 4)

$$
\begin{array}{lc}
y=a(0.5)^{t / 13} & y=a(1-r)^{t} \\
y=a(0.5)^{\frac{1}{3} \cdot t} & 1-r=0.95 \\
\left.y=a(0.5)^{1 / 13}\right)^{t} & r=0.05 \\
y=a(0.95)^{t} & 5 \% \text { decay }
\end{array}
$$

6) You deposit $\$ 8600$ into an account that pays $1.32 \%$ annual interest. Find the balance after 4 years when the interest is compounded daily.
$A \# 5$

$$
\begin{aligned}
& A=p\left(1+\frac{r}{n}\right)^{n t} \\
& A=8600\left(1+\frac{0.0132}{4}\right)^{4.4} \\
& A=9065.49 \\
& \$ 9065.49
\end{aligned}
$$

7) The value of a car (in thousands) can be approximated by the model $y=24(0.83)^{t}$. Estimate when the value of the car will be $\$ 6500$.

A \#6

$$
\begin{aligned}
& A=p\left(1+\frac{r}{n}\right)^{n t} \\
& A=8600\left(1+\frac{0.032}{365}\right)^{355 \cdot 4} \\
& A=9066.27 \\
& \quad \$ 9066.27
\end{aligned}
$$

8) In 2000, the population of a city was about 1.6 million. During the next 15 years, the population increase by about $1.76 \%$ each year. Write an exponential growth model giving the population y (in millions) t years after 2000. Estimate the city's population in 2009.

