H/Algebra 2 First Semester Final Review

Unit 1 Review

Solve a system of equations with both substitution and elimination method. $\begin{aligned} & 2 x+3 y=-5 \\ & x-2 y=8 \end{aligned}$ Answer: (2, - 3)				Parallel lines have \qquad slopes. Perpendicular lines have \qquad \qquad slopes. If $f(x)=\frac{2}{5} x-3$, create a new function $\mathrm{g}(\mathrm{x})$ that's perpendicular to $\mathrm{f}(\mathrm{x})$ through the point $(4,-1)$ Answer: $g(x)=-\frac{5}{2} x+9$
What is the slope formula? \qquad a) What is the slope if the x-int is 4 and the y-int is -7 ? b) What is the slope of the following chart?				What do $y=\|x\|, y=x, y=x^{2}, y=\sqrt{x}$ look like graphically? Graph $f(x)=-3\|x+2\|-4$ using $x-y$ table. Label its transformations from parent function $y=\|x\|$? (Hint: 4 different transformations) Answer: Desmos is your best friend=)
x	3	5	7	
y	10	6	2	
Answer: a) $\frac{7}{4}$ b) -2				
Cre poin Hint Ans	$\begin{aligned} & \text { uatic } \\ & \text {) } \end{aligned}$	e int	rm given two	If Mr. Ram gives a total of $\$ 100$ to Ms. Luddy for using her all lecture videos, then pays Ms. Luddy an additional $\$ 5$ for each quiz she creates for the semester, determine the function that represents the cost for Mr. Ram for using Ms Luddy's videos and x amount of quizzes for the semester. Answer: $f(x)=$ \qquad x + \qquad

Use the space below to write/draw key concepts/formulas/graphs for Unit 1:

Unit 2 Review

If a parabola has a focus of $(0,3)$ and a directrix of $y=-3$, what's the vertex and equation of the parabola? (Hint: always sketch a graph for this unit) (Also practice problems with horizontal parabolas) What if I give you a vertex of $(2,-1)$ and directrix of $x=5$? Can you write an equation? Answer: V: $(0,0), y=\frac{1}{12} x^{2}$	What is the purpose of axis of symmetry? How do you find the axis of symmetry for vertical parabolas? What about horizontal parabolas? If a parabola has an axis of symmetry of $y=-2$, and there's a point on the graph at $(1,3)$, can you find another point on the graph? Answer: (1, -7)
Memorize all transformations. (horizontal/vertical shift, horizontal/vertical shrink/stretch, and reflection over x \& y axis) If $f(x)=2 x^{2}+3$, create a function $\mathrm{g}(\mathrm{x})$ that first reflects over y-axis, then shifts left 5 , and finally vertically stretches by 4 . Answer: $g(x)=8(x+5)^{2}+12$	Vertex Formula: \qquad If Mr. Soria throws a football that follows a parabolic trajectory with, what does the x-value of the vertex represent in this context? What about the y-value of the vertex? Answer: Draw it out and think in terms of time and height.
Find out the vertex if the focus is $(3,-2)$ and the directrix is $y=8$. Then write the function $\mathrm{f}(\mathrm{x})$ in standard form. Answer: V: $(3,3), f(x)=-\frac{1}{20}(x-3)^{2}+3$	Find out the x -ints and the y -int given the function $f(x)=3(x-4)(x+5)$ (Graph it if you want some extra practice) Answer: x-ints $(4,0) \&(-5,0)$, y-int $(0,-60)$

Use the space below to write/draw key concepts/formulas/graphs for Unit 2:

Unit 3 Review

Use the space below to write/draw key concepts/formulas/graphs for Unit 3:

Unit 4 Review

Create a sketch of the graph of the following function $f(x)=x(x-3)(x+2)^{2}(x+5)$

What is the end behavior of the function to the left?

What is the degree of the function? Answer: Remember Desmos?	As x approaches \qquad , $\mathrm{f}(\mathrm{x})$ approaches \qquad As x approaches \qquad , ,f(x) approaches \qquad Can you also find the end behavior of $y=-3 x^{5}+10 x^{2}$? (Hint: Look at the highest degree to determine the shape, then look at the leading coefficient to determine whether the function if positive or negative)
Freebie (because it's the most simple) question: Multiply $(3 x-2)\left(x^{3}+2 x-9\right)$ Answer: $3 x^{4}-2 x^{3}+6 x^{2}-31 x+18$	Long Division (Honestly you can google it and have access to many questions for practice) Write down your own long division problem and make sure you have the answer for it. (Hint: Always make sure you fill in the missing terms and put the expression in descending order)
Is $(x-3)$ a factor of $P(x)=2 x^{4}+x^{3}-19 x^{2}-9 x+9$? Find out using synthetic division, then find out the rest of the solutions by rational root theorem ($\pm \frac{p}{q}$) Answer: $x=3,-3,-1, \frac{1}{2}$	a) Factor by grouping $x^{3}+2 x^{2}-9 x-18$ b) If $-\sqrt{ } 5 \& 7 i$ are two of the polynomial zeros, what is the least degree of the polynomial? Answer: $a)(x+3)(x-3)(x+2)$ b) 4th degree

Use the space below to write/draw key concepts/formulas/graphs for Unit 4:

Unit 5 Review

a) Simply $81^{\frac{3}{4}}$
b) Simply $\left(125^{\frac{1}{2}}\right)\left(25^{\frac{2}{5}}\right)$
a) Simply $3 \sqrt{27 x^{5}}-x^{2} \sqrt{75 x}$
b) Simply and remember to rationalize the denominator if needed $\sqrt[5]{\frac{64 x}{x^{3}}}$

Answer: a) 27, b) $5^{\frac{23}{70}}$	Answer: a) $4 x^{2} \sqrt{3 x}$, b) $\frac{25 \sqrt[5]{x^{3}}}{x}$
Solve $\sqrt{4 n+8}=\mathrm{n}+3$ (hint: always check your solution)	Solve $-3+(8-2 x)^{\frac{5}{4}}=29$
Answer: $\mathrm{x}=-1$	Answer: $\mathrm{x}=-4$
Solve $\sqrt{2 x-6}+3 \leq 9$	Find the inverse of $f(x)=2 x^{5}$
Hint: Consider the radicand as restricted domain.	
Answer: $3 \leq x \leq 21$	Answer: $\frac{\sqrt[5]{16 x}}{2}=g(x)$

Use the space below to write/draw key concepts/formulas/graphs for Unit 5:

