1. Long Division	2. Synthetic Division	3. Binomial Expansion
$(5x^4 - 2x^3 - 7x^2 - 39) \div (x^2 + 2x - 4)$	$(x^4 + 4x^3 + 16x - 35) \div (x + 5)$	Use Pascal's Triangle to find the 4th term of $(2q-3)^4$
Answer: $5x^2 - 12x + 37 + \frac{-122x + 109}{x^2 + 2x - 4}$	Answer: $x^3 - x^2 + 5x - 9 + \frac{10}{x+5}$	Answer: -216q
4. a. Create an equation in factored form if the polynomial has the following solutions. $x = 2, 2 + \sqrt{5}, -i$ b. Multiplying polynomials $(5x^2 - 4x + 6)(-2x + 3)$	5. Show a term is a factor, factor completely and sketch Show that $(x + 5)$ is a factor of $f(x) = x^3 + 3x^2 - 9x + 5$. Then, factor completely and sketch a graph. Label the x and y intercepts on the graph Answer: $f(x) = (x - 1)(x - 1)(x + 5)$	6. Characteristics of the graph
Answers: a. $f(x) = (x-2)(x-2-\sqrt{5})(x-2+\sqrt{5})(x-i)(x+i)$ B. $-10x^3 + 23x^2 - 24x + 18$	20 (0, 5) (-5, ((1, 0)) 0	a. Local Mins/Maxs b. End behavior c. $f(x) > 0 / f(x) < 0$ d. increasing/decreasing Answers: A. Local min: (0, -1), (4, 1) Local max: (-2, 2) (3, 3) B. $f(x) \rightarrow +\infty as x \rightarrow +\infty$, $f(x) \rightarrow -\infty as x \rightarrow -\infty$ C. $f(x) > 0$ when $-3 < x < -1$, $x > 1$ f(x) < 0 when $x < -3$, $-1 < x < 1D. increasing x < -2, 0 < x < 3, x > 4Decreasing -2 < x < 0, 3 < x < 4$

7. Solve (imaginary solutions)	8. Transformations	9. Factoring
$f(x) = x^3 + x^2 + 3x + 3$	Consider the function $f(x) = x^3$	$-4x^8 + 256x^5$
Answer: $x = -1, \pm i\sqrt{3}$	Write a new function $g(x)$ after the following transformation in the order that they are listed! 1. Translation left 3 and down 2 2. Reflection over the x-axis 3. Vertical stretch by 5	Answer: $-4x^5(x-4)(x^2+4x+16)$
	Answer: $g(x) = -5(x + 3)^3 + 10$	

1. Long Division	2. Synthetic Division	3. Binomial Expansion
------------------	-----------------------	-----------------------

$(5x^4 - 2x^3 - 7x^2 - 39) \div (x^2 + 2x - 4)$	$(x^4 + 4x^3 + 16x - 35) \div (x + 5)$	Use Pascal's Triangle to find the 4th term of $(2q-3)^4$
4. a. Create an equation in factored form if the polynomial has the following solutions. $x = 2, 2 + \sqrt{5}, -i$ b. Multiplying polynomials $(5x^2 - 4x + 6)(-2x + 3)$	5. Show a term is a factor, factor completely and sketch Show that $(x + 5)$ is a factor of $f(x) = x^3 + 3x^2 - 9x + 5$. Then, factor completely and sketch a graph. Label the x and y intercepts on the graph	6. Characteristics of the graph
		 c. f(x) > 0 / f(x) < 0 d. increasing/decreasing
7. Solve (imaginary solutions) $f(x) = x^3 + x^2 + 3x + 3$	8. Transformations Consider the function $f(x) = x^3$ Write a new function $g(x)$ after the following transformation in the order that they are listed! 1. Translation left 3 and down 2 2. Reflection over the x-axis 3. Vertical stretch by 5	9. Factoring $-4x^8 + 256x^5$